

'Biosensors – a key to our future health!'

Prof. Brian MacCraith Director, BDI Dublin City University (DCU)

FOBIS Biomedical Sensors Foresight Workshop Stockholm, March 3rd 2006

- Focus on next-generation Biomedical Diagnostics
- Home-use & Point of Care
- €23m Investment
- Industry-Academic Partnership

Outline

- Background
- BDI Vision
- Examples
- Trends
- Recent Predictions from Expert Groups
- Conclusions

Global Healthcare Challenge

- Chronic diseases
 - Cardiovascular (CVD)
 - Cancer
 - Diabetes
- Increased lifeexpectancy
- Healthcare costs

BDI: A Vision of Future Health

- Revolutionary diagnostic devices:
 - Early warning of life-threatening events
 - Control of chronic diseases
 - Link therapy and monitoring
 - 'personalised medicine'
 - theranostics
 - Monitor well-being
- Self Test Home Use
- Point of Care (POC) Doctors' surgeries...

Biomedical analysis & communication system Disposable sample prep & bioassay chip

The Challenge(s)

- Major scientific challenge
 - Smart, rapid, miniature systems
 - Low concentrations of Biomarkers
 - Small volumes of complex fluids
 - Sensitivity, reliability

- Integration of diverse technologies
- Ethics, adoption, cost, reimbursement...

Examples: Diseases

- Cardiovascular Disease
- Diabetes
- Colon Cancer

Example: Cardiac Wellness Biochip

• Critical Problem:

- Accounts for 38% of all deaths (2004)
- Significant impact on life quality and quantity
- Substantial cost to healthcare system

• BDI Approach:

- Simple, low cost, early monitoring of cardiac 'wellness' markers
- Early intervention; lifestyle changes
- Better patient outcomes
- Significant cost and health benefits

Enhancements in Fluorescence-based Biochips

- **1.** Enhanced Fluorescence Capture Efficiency
- **2.** Plasmonic Amplification (Metal-enhanced Fluorescence)
- **3.** High Brightness Labels
 - 1+2+3 → 1000-fold enhancement

DIABETES

- Major healthcare challenge
 - 4th major cause of premature death
 - 1 in 25 → 1 in 13
 - 9% of NHS budget in UK
 - 300m worldwide diabetics
- Glucose Monitoring
 - >25% of Diagnostics Market (€25bn)
 - €10bn by 2010

DIABETES: Trends in Glucose Monitoring

In-vitro Wearable Minimally Invasive...

..... 'In-vivo' ??

Trends in Diabetes Monitoring

- Traditional meters will disappear
- Patch and disposable / Implanted minimally invasive devices
- Non-invasive devices
- Closed-loop systems (sense & insulin dose)

Animas Corp: IR laser; C-clamp around 5mm blood vessel

In-vivo Glucose Monitoring using Glucose-Binding Protein (GBP)

FP: Environment-sensitive Fluorophore

Biomarker Discovery: Colon Cancer

- Major Killer
- Current Tests are crude and unreliable
- Objective:

Develop new, rapid test for early detection

Strategy: New Biomarker(s) + Biochip

Biomarker Discovery

- *Patient profiling* at Clinical Research Centre at Beaumont Hospital, Dublin.
- Sample collection, analysis and banking (e.g. blood serum)

• **Biomarker discovery using protein arrays**

KEY DRIVERS FOR BIOSENSORS

- **Miniaturisation** (Microsystems / Nanotechnology)
- Integration (Lab-on-a-chip; MEMS; µTAS ..)
- Multi-analyte sensing (Panels)
- Mass-production / disposability
- Sensing & wireless comms combined
- Convergence (Micro Nano Bio ICT ...)

Biomedical Sensors – Technology trends

- Smart bandages (microneedles; sensing + drug delivery)
- In-vivo modules
- Breath monitoring
- Spectroscopic monitoring + Chemometrics
- Wearable sensors

Nanobot Biosensors ?

Smart Bandages -- RFID

Breath Monitoring

Breath constituent	Level
Methane	2 – 10 ppm
Ethane	0-10 ppb
Penthane	0-10 ppb
Nitric Oxide	10 –50 ppb
Carbon Monoxide	1 –10 ppm
Carbonyl Sulfide	0-10 ppb
Nitrous Oxide	1-20 ppb
Isoprene	50 – 200 ppb
Ammonia	0 – 1ppm
Acetone	0 – 1 ppm

Disease	Marker	Level
Renal Failure	Ammonia	150 – 2000 ppb
Breast Cancer	Ethane	0 – 10 ppb
Asthma	Nitric Oxide	10 – 100 ppb

Trends

- Diagnostics will become more *predictive*
- Therapeutic interventions will become more preventive
- Healthcare will become more <u>personalised</u> and tailored to the individual

'Futurewatch: Biotechnologies for 2025', New Zealand Ministry of Research, Science & Technology, 2005

Nanomedicine

Role for Nanomedicine:

- Genomics & Proteomics rapidly elucidating molecular basis of many diseases
- Powerful diagnostic tools to identify genetic predisposition to disease
- Use of POC diagnostics to
 - Identify patients requiring preventative medication
 - Select most appropriate medication for individuals
 - Monitor response to treatment

ESF-European Medical Research Councils Forward Look Report on 'Nanomedicine' 2005

Priority Areas in Nanomedicine (~Biosensors)

• Next 5 years:

- Engineering technology for immobilising cells/molecules on surfaces
- Non-invasive, in-vivo diagnostic systems
- Improved sensitivity for in-vivo methods
- Implantable/injectable nanodevices for diagnosis

ESF-European Medical Research Councils Forward Look Report on 'Nanomedicine' 2005

Priority Areas in Nanomedicine (~Biosensors)

• Next 10 years:

- Single molecule analysis
- Nanosensing of multiple, complicated analytics in-vitro
- Nanosensing in vivo with telemetricallycontrolled, functional mobile sensors
- Rapid fingerprinting of all components in blood samples

ESF-European Medical Research Councils Forward Look Report on 'Nanomedicine' 2005

Conclusions: Trends

- Self-test; Home-use
- Personalised medicine
- Theranostics
- Pharmacogenomics ---- Nutrigenomics!!
- Personal responsibility for health
- Sensors + eHealth
- Closed loop systems
- Wearable / in-vivo
- Nanomedicine
- Complexity of disease multi-gene need for highly sensitive arrays

Conclusions: Key Technical Areas

- Biorecognition receptors
- Immobilisation / low NSB
- High sensitivity transduction (arrays)
- Calibration stability
- In-vivo: Biomaterials, batteries etc
- Glucose!!
- Etc.

Conclusions

- Major growth area
- Some trends predictable
- Academic Industry Clinical Partnerships
- Multidisciplinary incentivise
- Need for high-quality underpinning science
- Need to consider total situation: government, health insurance, ethics, 'who pays?'
- Impact on the quality of people's lives

'The future has already happened, it just isn't very well distributed.'

William Gibson

Thank you!

